Dernière mise à jour le 09/12/2024

BigData supervision: Grafana Kibana Graphite Prometheus

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : ElastickSearch,…
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

Connaître les outils et mécanismes permettant de superviser des fermes BigData. Identifier les critères de choix.

Public visé

Exploitants, architectes BigData, chefs de projet et toute personne souhaitant mettre en oeuvre un système de supervision d'une ferme BigData.

Pré-requis

Connaissance générale des systèmes d'informations et des bases de données.

Programme

Supervision : définitions
Les objectifs de la supervision, les techniques disponibles. La supervision d'une ferme BigData.
Objets supervisés. Les services et ressources. Protocoles d'accès. Exporteurs distribués de données.
Définition des ressources à surveiller. Journaux et métriques.
Application aux fermes BigData : Hadoop, Cassandra, Hbase, MongoDB
 
Mise en oeuvre
Besoin de base de données avec agents distribués, de stockage temporel (timeseriesDB)
Produits : Prometheus, Graphite, Influxdb, ElasticSearch.
Présentation, architectures.
Les sur-couches : Kibana, Grafana.
 
Graphite
Composants, architecture
Modèle de données et mesures
Format des données stockées, notion de timestamp
Calculs de l'espace disque nécessaire
Architecture de production.
 
InfluxDB
Présentation, structure, évolution, installation
Bucket, token, organisation
Plugin Telegraph, architecture
Interface graphique, alertes, langage flux
Démonstration avec Jolokia2 et Cassandra.
 
JMX
Principe des accès JMX. MBeans. Visualisation avec jconsole et jmxterm.
Suivi des performances cassandra : débit d'entrées/sorties, charges, volumes de données, tables, …
 
Prometheus
Installation et configuration de base
Définition des ressources supervisées, des intervalles de collecte
Types de mesures : compteurs, jauges, histogrammes, résumés.
Notions d'instances, de jobs.
Démarrage du serveur Prometheus
Premiers pas dans la console web, et l'interface graphique.
Le langage PromQL
Node Exporter. JMX Exporteur. Mongodb Exporteur.
Démonstration avec Cassandra
Configuration des agents sur les noeuds de calculs. Agrégation des données JMX. Expressions régulières.
Requêtage. Visualisation des données
Comparaison avec Graphite et InfluxDB.
 
Exploration et visualisation des données
Mise en oeuvre de Grafana. Installation, configuration.
Pose de filtres sur Prometheus et remontée des données.
Etude des différents types de graphiques disponibles,
Agrégation de données. Appairage des données entre Prométheus et Grafana.
Visualisation et sauvegarde de graphiques,
création de tableaux de bord à partir des graphiques.
 
Kibana, installation et configuration
Architectures, paramétrages
Installation, configuration du mapping avec Elasticsearch.
Mapping automatique ou manuel
Démonstration avec Cassandra
Injection des données avec Logstash, Filebeat et Metricbeat.
Configuration des indexes
Exploration des données,création de graphiques, de tableaux de bord

Modalités

Modalités : en présentiel, distanciel ou mixte . Toutes les formations sont en présentiel par défaut mais les salles sont équipées pour faire de l'hybride. – Horaires de 9H à 12H30 et de 14H à 17H30 soit 7H – Intra et Inter entreprise.
Pédagogie : essentiellement participative et ludique, centrée sur l’expérience, l’immersion et la mise en pratique. Alternance d’apports théoriques et d’outils pratiques.
Ressources techniques et pédagogiques : Support de formation au format PDF ou PPT Ordinateur, vidéoprojecteur, Tableau blanc, Visioconférence : Cisco Webex / Teams / Zoom.
Pendant la formation : mises en situation, autodiagnostics, travail individuel ou en sous-groupe sur des cas réels.

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.
Code de formation : BD046

Tarifs

Prix public : 2090
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Durée : 21 heures
Délai d'accès : Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

BD020

ElasticStack : présentation

Comprendre le fonctionnement et les apports d'Elastic Stack et de ses composants (Elasticsearch, Logstash, Kibana, Beats) dans le traitement des données..

7 heures de formations sur 1 Jours
En savoir plus

Formation continue

Big Data

BDRN102

Hadoop Cloudera : administration

Connaître les principes du framework Hadoop et savoir l'installer et le configurer. Maitriser la configuration et la gestion des services avec Cloudera Manager   

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

BD001

Bigdata : architecture et technologies

Comprendre les concepts du BigData et savoir quelles sont les technologies implémentées.

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD021

Spark, développer des applications pour le Big Data

A l’issue de la formation, le stagiaire sera capable de maîtriser le framework Spark pour traiter des données hétérogènes et optimiser les calculs.   Maîtriser les concepts fondamentaux de Spark Savoir intégrer Spark dans un environnement Hadoop Développer des applications d’analyse en temps réel avec Spark Streaming Faire de la programmation parallèle avec Spark sur un cluster Manipuler des données avec Spark SQL Avoir une première approche du Machine Learning

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

BDRN103

Hadoop : Hbase mise en œuvre et administration

A l’issue de la formation, le stagiaire sera capable d’installer et de mettre en œuvre une configuration distribuée de données sous la solution HBase. Comprendre le fonctionnement de HBase, savoir mettre en place une configuration distribuée  

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD003

Big Data – L’essentiel

      • Comprendre le concept du Big Data Être capable d'identifier l’écosystème et comprendre les technologies associées
      • Savoir anticiper son intégration dans les activités informatiques de l'entreprise
      • Être en mesure de l'exploiter dans le respect des règles de sécurité et de confidentialité
 

14 heures de formations sur 2 Jours
En savoir plus