Dernière mise à jour le 20/07/2024

Hadoop : l’écosystème

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : NoSQL et Hadoop
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

Chefs de projets, développeurs, et toute personne souhaitant comprendre les mécanismes Hadoop et le rôle de chaque composant.

Public visé

Chefs de projets, développeurs, et toute personne souhaitant comprendre les mécanismes Hadoop et le rôle de chaque composant.

Pré-requis

Connaissances générales des systèmes d'information.

Programme

Introduction  
Rappels sur NoSQL.
Le théorème CAP.
Historique du projet hadoop
Les fonctionnalités : stockage, outils 'extraction, de conversion, ETL, analyse, …  
Exemples de cas d'utilisation sur des grands projets.
Les principaux composants : HDFS pour le stockage et YARN pour les calculs.
Les distributions et leurs caractéristiques (HortonWorks, Cloudera, MapR, GreenPlum, Apache, …)  2.
 
L'architecture  
Terminologie : NameNode, DataNode, ResourceManager
Rôle et interactions des différents composants
Présentation des outils d'infrastructure : ambari, avro, zookeeper; de gestion des données : pig, oozie, tez, falcon, pentaho, sqoop, flume; d'interfaçage avec les applications GIS; de restitution et requêtage : webhdfs, hive, hawq, impala, drill, stinger, tajo, mahout, lucene, elasticSearch, Kibana
Les architectures connexes : spark, cassandra  
 
Exemples interactifs  
Démonstrations sur une architecture Hadoop multi-nœuds.
Mise à disposition d'un environnement pour des exemples de calcul  
Travaux pratiques : Recherches dans des données complexes non structurées.  
 
Applications  
Cas d'usages de hadoop.
Calculs distribués sur des clusters hadoop
 

Modalités

Modalités : en présentiel, distanciel ou mixte – Horaires de 9H à 12H30 et de 14H à 17H30 soit 7H – Intra et Inter entreprise
Pédagogie : essentiellement participative et ludique, centrée sur l’expérience, l’immersion et la mise en pratique. Alternance d’apports théoriques et d’outils pratiques.
Ressources techniques et pédagogiques : Support de formation au format PDF ou PPT Ordinateur, vidéoprojecteur, Tableau blanc, Visioconférence : Cisco Webex / Teams / Zoom
Pendant la formation : mises en situation, autodiagnostics, travail individuel ou en sous-groupe sur des cas réels

Méthodes

Fin de formation : entretien individuel
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation
Assiduité : certificat de réalisation (validation des acquis)
Code de formation : BD018

Tarifs

Prix public : 720
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation.
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • Pôle Emploi sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
  • CPF -MonCompteFormation
Contactez nous pour plus d’information

Lieux & Horaires

Campus : Ensemble des sites

Durée : 7 heures
Délai d'accès :
Jusqu’à 8 jours avant le début de la formation

Distanciel possible : Oui

Prochaines sessions

Cliquez sur la date choisie pour vous inscrire :

  • Inscription au 25 / 11 / 2024
    : Ensemble des sites
    : Distanciel possible
    : 7 heures
    : 1 jours
  • Inscription au 02 / 09 / 2025
    : Ensemble des sites
    : Distanciel possible
    : 7 heures
    : 1 jours
Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

BD0103

Les fondamentaux de l’analyse statistique avec R

Savoir installer R Comprendre comment manipuler des données avec R Savoir importer et exporter des données Être en mesure de réaliser des analyses statistiques basiques avec R Savoir restituer des résultats à l'aide de graphiques

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

DB014

Hadoop, développer des applications pour le Big Data

 

    • Construire un programme à base de Map Reduce
    • Intégrer Hadoop HBase dans un workflow d'entreprise
    • Travailler avec Apache Hive et Pig depuis HDFS
    • Utiliser un graphe de tâches avec Hadoop
 

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

BD016

Hadoop Hortonworks : administration avec Ambari

Connaître les principes du framework Hadoop et savoir l'installer, le configurer et l'administrer avec Ambari (tableaux de bord, supervision, gestion des services, etc ...)

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

DB034

Dataiku DSS

Savoir installer, configurer, Dataiku DSS, l'utiliser depuis l'interface web ou des API. Présentation, concepts DSS Connexion aux données Préparation des données Graphiques et statistiques Machine learning Flow/Recipes Interfaces de programmation

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD019

Développer des applications pour Spark avec Hadoop Cloudera avec Certification

    • Identifier et utiliser les outils appropriés à chaque situation dans un écosystème hadoop
    • Utiliser Apache Spark et l'intégrer dans l'écosystème hadoop
    • Utiliser Sqoop, Kafka, Flume, Hive et Impala
 

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

NSQL

Les fondamentaux du NoSQL

#actioncollective #NoSQL  

A l’issue de la formation, le stagiaire sera capable d’appréhender de façon opérationnelle les principales caractéristiques des bases de données NoSQL. Identifier les différences entre SGBD SQL et SGBD NoSQL Évaluer les apports et les inconvénients inhérents aux technologies NoSQL Identifier les principaux acteurs et solutions du marché pour chaque modèle de données Connaître les champs d'application des SGBD NoSQL en opérationnel et en analytique Comprendre les différentes architectures, modèles de données et implémentations techniques Identifier les critères de choix   

14 heures de formations sur 2 Jours
En savoir plus