Dernière mise à jour le 21/11/2024

Big Data – Mise en oeuvre pratique d’une solution complète d’analyse des données

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : Fondamenteaux
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

        • Disposer des compétences techniques nécessaires à la mise en œuvre d'analyses Big Data
        • Comprendre le cadre juridique du stockage et de l'analyse de données
        • Savoir utiliser des outils de collecte opensource
        • Être en mesure de choisir la bonne solution de stockage de données au regard des spécificités d'un projet (OLAP, NoSQL, graph)
Explorer la boite à outils technologique que constitue Hadoop et son écosystème et savoir comment utiliser chaque brique (MapReduce, HIVE, SPARK,…)
 

Public visé

Chefs de projet Data Scientists, Data Analysts Développeurs Analystes et statisticien Toute personne en charge de la mise en oeuvre opérationnelle d'un projet Big Data en environnement Hadoop

Pré-requis

Il est recommandé d'avoir suivi le module «Big Data - Les fondamentaux de l'analyse des données» (BD007) pour suivre cette formation dans des conditions optimales Être familier des environnement techniques décisionnels traditionnels et connaître les principes de base d'algorithme est vivement recommandé Disposer d'une première approche pratique d'Hadoop est un plus pour suivre cette formation

Programme

LA COLLECTE DE DONNÉES
Où et comment collecter des données ?
Les sources de données, les API, les fournisseurs, les agrégateurs...
Les principaux outils de collecte et de traitement de l'information (ETL)
Prise en main de Talend ETL et de Talend Data
Préparation (outils libres)
Les particularités de la collecte des données semi-structurées et non-structurées  
 
LE STOCKAGE LES DONNÉES
Les différentes formes de stockage des données : rappel de l'architecture relationnelle de stockage des données transactionnelles (SGBD/R) et multidimensionnelles (OLAP)
Les nouvelles formes de stockage des données
- compréhension, positionnement et comparaison : Bases orientées clé-valeur, documents, colonnes, graphes Panorama des bases de données NoSQL
Prise en main d'une base de données orientée colonne (Hbase)
Particularités liées au stockage des données non-structurées
Comment transformer des données non structurées en données structurées  
 
L'ÉCOSYSTÈME HADOOP
Présentation des principaux modules de la distribution
Apache Hadoop Présentation et comparaison des principales distributions commerciales (Cloudera, Hortonworks...) L'infrastructure matérielle et logicielle nécessaire au fonctionnement d'une distribution Hadoop en local ou dans le Cloud
Les concepts de base de l’architecture Hadoop : Data Node, Name Node, Job Tracker, Task Tracker Présentation de HDFS (Système de gestion des fichiers de Hadoop)
Prise en main et exercices pratiques dans HDFS
Présentation de MapReduce (Outil de traitement de Hadoop)
Les commandes exécutées au travers de PIG Utilisation de HIVE pour transformer du SQL en MapReduce  
 
L'ANALYSE DE DONNÉES
Requêter les données
Analyser et comprendre la signification des données extraites
Particularités liées à l'analyse des données non structurées
Analyse statistique : notions de base
Analyse prédictive : comment transformer des données du passé en prévisions pour le futur
Calculer des tendances
Développer des programmes simples d'automatisation des analyses (en Python)
Machine Learning : les bases de l'apprentissage machine avec Spark Deep
Learning : notions de base de l'analyse future automatisée de données non structurées  
 
MISE EN OEUVRE DE PROJETS BIG DATA
Automatisation de tâches avec Oozie
Mise en production de programmes de Machine Learning
L'utilisation des notebooks comme délivrables
Traitement du temps réel
Gouvernance de données Big Data
 

Modalités

Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.
Code de formation : BD006

Tarifs

Prix public : 2690
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Durée : 28 heures
Délai d'accès :
Jusqu’à 8 jours avant le début de la formation

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

DB014

Hadoop, développer des applications pour le Big Data

 

    • Construire un programme à base de Map Reduce
    • Intégrer Hadoop HBase dans un workflow d'entreprise
    • Travailler avec Apache Hive et Pig depuis HDFS
    • Utiliser un graphe de tâches avec Hadoop
 

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

BD018

Hadoop : l’écosystème

Chefs de projets, développeurs, et toute personne souhaitant comprendre les mécanismes Hadoop et le rôle de chaque composant.

7 heures de formations sur 1 Jours
En savoir plus

Formation continue

Big Data

DB034

Dataiku DSS

Savoir installer, configurer, Dataiku DSS, l'utiliser depuis l'interface web ou des API. Présentation, concepts DSS Connexion aux données Préparation des données Graphiques et statistiques Machine learning Flow/Recipes Interfaces de programmation

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD019

Développer des applications pour Spark avec Hadoop Cloudera avec Certification

    • Identifier et utiliser les outils appropriés à chaque situation dans un écosystème hadoop
    • Utiliser Apache Spark et l'intégrer dans l'écosystème hadoop
    • Utiliser Sqoop, Kafka, Flume, Hive et Impala
 

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

NSQL

Les fondamentaux du NoSQL

#actioncollective #NoSQL  

A l’issue de la formation, le stagiaire sera capable d’appréhender de façon opérationnelle les principales caractéristiques des bases de données NoSQL. Identifier les différences entre SGBD SQL et SGBD NoSQL Évaluer les apports et les inconvénients inhérents aux technologies NoSQL Identifier les principaux acteurs et solutions du marché pour chaque modèle de données Connaître les champs d'application des SGBD NoSQL en opérationnel et en analytique Comprendre les différentes architectures, modèles de données et implémentations techniques Identifier les critères de choix   

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD020

ElasticStack : présentation

Comprendre le fonctionnement et les apports d'Elastic Stack et de ses composants (Elasticsearch, Logstash, Kibana, Beats) dans le traitement des données..

7 heures de formations sur 1 Jours
En savoir plus