Dernière mise à jour le 22/11/2024

Python avancé pour data-scientists

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : Fondamenteaux
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

Savoir utiliser les principaux outils de traitement et d'analyse de données pour Python, savoir extraire des données d'un fichier et les manipuler, mettre en place un modèle d'apprentissage simple.
Savoir utiliser les principaux outils de traitement et d'analyse de données pour Python
Savoir appliquer les pratiques optimales en matière de nettoyage et de préparation des données avant l'analyse
Être capable d'extraire des données d'un fichier
Comprendre les mécanismes d'interconnexion aux bases de données
Comprendre les principaux outils de traitement et d'analyse de données pour Python

Public visé

Développeurs en Python, Développeurs de logiciels, programmeurs, Data analysts, Data scientists.

Pré-requis

Maîtrise de la programmation Python.

Programme

Positionnement Python dans l'analyse de données
Besoins des data-scientists : calculs, analyse d'images, machine learning, interface avec les bases de données
Apports de python : grande variété d'outils, expertise dans le domaine du calcul scientifique
Tour d'horizon des outils:
pandas, pyarrow, agate, bokeh, scikit-learn, pybrain, tensorflow, keras, mxnet, caffe
 
Calculs et graphiques
NumPy : Base du calcul sur des tableaux
SciPy : Scientific Tools for Python, couche scientifique
Manipulation de tableaux, fonctions mathématiques.
Représentation graphique avec basemap et matplotlib.
 
Atelier : Mise en oeuvre de SciPy/NumPy : manipulation d'images, détection de contours
 
Être capable d'extraire des données d'un fichier
Pandas : manipulation de tables de données. Notion de dataframe.
Manipulation de données relationnelles
Tableaux avec Pandas: indexation, opérations, algèbre relationnelle
Stockage dans des fichiers: CSV, JSon
Comparaison et performances Pandas / pyarrow / NumPy
 
Atelier : construction d'ETL de base entre json et csv
 
Comprendre les mécanismesd'interconnexion aux bases de données
Définitions : pilotes, connexions, curseurs, CRUD, transactions
Les pilotes : postgresql, mysql, mariadb, ... Présentation de sql-alchemy
Opérations : gestion du curseur, chargement de données, insertion et modification d'enregistrements
 
Atelier : mise en oeuvre avec postgresql. Construction d'ETL SQL/json
 
Comprendre les principaux outils de traitement et d'analyse de données pour Python
Présentation des outils d'apprentissage Python : scikit-learn, pybrain, TensorFlow/keras, mxnet, caffe
 
Atelier : mise en oeuvre de scikit-learn et génération de jeux de données.
 
Créer des sélections et des classements dans de grands volumes de données pour dégager des tendances
Présentation de pyspark
Machine learning et deep learning
TensorFlow : principe de fonctionnement, plateformes supportées, distribution,

Modalités

Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.
Code de formation : BD060

Tarifs

Prix public : 2190
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Campus : Ensemble des sites

Durée : 21 heures
Délai d'accès :
Jusqu’à 8 jours avant le début de la formation

Distanciel possible : Oui

Prochaines sessions

Cliquez sur la date choisie pour vous inscrire :

  • Inscription au 16 / 12 / 2024
    : Ensemble des sites
    : Distanciel possible
    : 21 heures
    : 3 jours
Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

BD021

Spark, développer des applications pour le Big Data

A l’issue de la formation, le stagiaire sera capable de maîtriser le framework Spark pour traiter des données hétérogènes et optimiser les calculs.   Maîtriser les concepts fondamentaux de Spark Savoir intégrer Spark dans un environnement Hadoop Développer des applications d’analyse en temps réel avec Spark Streaming Faire de la programmation parallèle avec Spark sur un cluster Manipuler des données avec Spark SQL Avoir une première approche du Machine Learning

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

BDRN103

Hadoop : Hbase mise en œuvre et administration

A l’issue de la formation, le stagiaire sera capable d’installer et de mettre en œuvre une configuration distribuée de données sous la solution HBase. Comprendre le fonctionnement de HBase, savoir mettre en place une configuration distribuée  

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD003

Big Data – L’essentiel

      • Comprendre le concept du Big Data Être capable d'identifier l’écosystème et comprendre les technologies associées
      • Savoir anticiper son intégration dans les activités informatiques de l'entreprise
      • Être en mesure de l'exploiter dans le respect des règles de sécurité et de confidentialité
 

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD022

Elastic Stack pour administrateurs

Comprendre le fonctionnement d'Elasticsearch, savoir l'installer et le configurer, gérer la sécurité avec X-Pack, et installer / configurer kibana pour le mapping sur les données Elasticsearch.

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

NE080

Big Data – Spark pour les développeurs

Découvrir les concepts clés du Big Data Comprendre l'écosystème technologique d'un projet Big Data Evaluer les techniques de gestion des flux de données massives Implémenter des modèles d'analyses statistiques pour répondre aux besoins métiers Découvrir les outils de Data Visualisation

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

BD004

Big Data – Enjeux et perspectives

        • Disposer d'une vision claire du Big Data et de ses enjeux
        • Connaître les concepts sous-jacents
        • Comprendre comment les entreprises les plus avancées, dans tous les secteurs économiques, ont mis en place et tiré profit de projets Big Data
        • Connaitre les informations essentielles pour lancer une initiative Big Data
        • Connaitre l'écosystème, et les principales technologies et solutions associées au Big Data
        • Savoir mesurer les impacts de tels projets sur l'entreprise et son organisation
 

14 heures de formations sur 2 Jours
En savoir plus