Dernière mise à jour le 12/12/2024

Big Data – L’essentiel

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : Fondamenteaux
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

      • Comprendre le concept du Big Data Être capable d'identifier l’écosystème et comprendre les technologies associées
      • Savoir anticiper son intégration dans les activités informatiques de l'entreprise
      • Être en mesure de l'exploiter dans le respect des règles de sécurité et de confidentialité
 

Public visé

      • Responsables de la DSI s'interrogeant sur les apports et le déploiement du Big Data Chefs de projets,
      • Responsables de métiers et consultants souhaitant aborder les projets
      • Toute personne impliquée dans la réflexion et l'étude du Big Data
 

Pré-requis

Connaissances sommaires en informatique

Programme

EXEMPLES D'USAGE PERTINENT DU BIG DATA
Réseaux sociaux : Google, Twitter, Youtube
Gestion des clients (CRM) : Vue 360° des clients / Multicanal
Sécurité informatiques (étude de logs) : identification des tentatives d'attaques
Analyse des logs d'Internet (Web)
Profiling d'individus : ADN numérique
Synthèse des critères de succès d'un projet Big Data et causes d'échec  
 
DÉFINITION COMMUNE DU BIG DATA SELON LES GRANDS ACTEURS DU MARCHÉ
Caractéristiques techniques des 3V de Gartner (Vélocité, Variété et Volume) et les variantes (Véracité, Valeur, Validité…) Collecte et traitement des données structurées, semi-structurées et non-déstructurées
Transformation des données en informations
Création de la valeur à partir des données / Exemple de monétisation
Exemple : gestion des données en cycles, de l'acquisition à la gouvernance  
 
TECHNOLOGIES DE RÉFÉRENCE DU BIG DATA À CONNAÎTRE
Stockage des données à traiter : fichiers, blocs et objets
Différents types de base des données NoSQL (Not Only SQL)
Architecture de cluster et composants économiques
Traitement parallèle des données (Grid)
Hadoop : un modèle d'open source du Big Data adopté par les grands acteurs de l'informatique (IBM, Oracle, Microsoft, Amazone, EMC, Google...)
Principaux composants d'Hadoop : HDFS (Hadoop Distributes File System), MapReduce ...
Ecosystème et technologies associées à Hadoop : Pig, Flume, Zookeeper, H-BASE, Lucine, Hive, Oozie, Cassandra, Machine Learning...
Exemple de traitement en temps réel : traitement des données à la volée (Data Streaming)
Analyse de données (Data Analytics et Business Intelligent)  
 
INTRODUCTION AUX ARCHITECTURES DES SOLUTIONS DE CALCUL DISTRIBUÉ
Stockage objets (pas de verrouillage de fichier dans la cadre des multiutilisateurs)
Serveurs NoSQL et HDFS (Fichiers distribués)
Scalabilité horizontale
Enjeux des architectures distribuées selon l'organisme
CSA (Cloud Security Alliance) dédié au Big Data : Sécurité, gestion des données en grandes quantités
Limitations en termes d'usages (Analytiques)
Impacts des choix de technologies et d'architectures sur les usages (traitement des données en batch, temps réel, streaming …)  
 
PLATES-FORMES CLOUD PUBLIC BIG DATA APAAS (DATA AS A SERVICE) À EXPLOITER IBM
Analytics de la plate-forme
Bluemix
Amazone
Web Services (stockage des données et plates-formes d'analytiques)
Google Platform Big Data
Microsoft
Azure
Big Data Points communs et différents entre les plates-formes Big Data  
 
TROIS APPROCHES DE DÉPLOIEMENT DU BIG DATA : SUR SITE ET DANS LE CLOUD DAAS
Causes des nombreux échecs de projets
Big Data selon des cabinets d'étude du secteur
Trois approches de déploiement "sur site" : Hadoop et son écosystème à télécharger, Big Data en versions distribuées et Data a Service Déploiement sur site : définition des objectifs, choix des solutions d'analyse et d'intégration, présentation des informations (Data Visualization) / revue des fournisseurs de composants Big Data
Déploiement sur site en version distribuée : Hortonworks, MapR, Cloudera, IBM
Déploiement dans les plates-formes Cloud Big Data et les précautions à prendre (métriques de qualité)  
 
QUALITÉ DES DONNÉES
Les 11 principales étapes de traitement des données selon les organismes internationaux
Processus de qualification des données (temporel, contextuel, liens aux autres données...) / cadres juridiques (CNIL, usages libres, payants...), formats ouverts et propriétaires
Approche d'enrichissement avec l'Open Data / WiKiData.org  
 
SÉCURITÉ DES DONNÉES ET CONFIDENTIALITÉ DU BIG DATA
Loi européenne et CNIL (protection de la vie privée)
Recommandation des bonnes pratiques de l'organisme international
CSA (Cloud Security Alliance) pour le Big Data Panorama des moyens conventionnels de sécurité des données et d'accès au Datacenter (cryptage et DLP : Data Lost Prevention…)  
 
IMPACTS DU BIG DATA À ANTICIPER
Évolution des données (Internet des objets, mobilité...)
Impacts sur les compétences des équipes informatiques, de DRH, du Management...
Rôle de la DSI face à la montée du Big Data et des solutions numériques
 

Modalités

Modalités : en présentiel, distanciel ou mixte . Toutes les formations sont en présentiel par défaut mais les salles sont équipées pour faire de l'hybride. – Horaires de 9H à 12H30 et de 14H à 17H30 soit 7H – Intra et Inter entreprise.
Pédagogie : essentiellement participative et ludique, centrée sur l’expérience, l’immersion et la mise en pratique. Alternance d’apports théoriques et d’outils pratiques.
Ressources techniques et pédagogiques : Support de formation au format PDF ou PPT Ordinateur, vidéoprojecteur, Tableau blanc, Visioconférence : Cisco Webex / Teams / Zoom.
Pendant la formation : mises en situation, autodiagnostics, travail individuel ou en sous-groupe sur des cas réels.

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.
Code de formation : BD003

Tarifs

Prix public : 1590
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Durée : 14 heures
Délai d'accès : Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

BD022

Elastic Stack pour administrateurs

Comprendre le fonctionnement d'Elasticsearch, savoir l'installer et le configurer, gérer la sécurité avec X-Pack, et installer / configurer kibana pour le mapping sur les données Elasticsearch.

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BDRN103

Hadoop : Hbase mise en œuvre et administration

A l’issue de la formation, le stagiaire sera capable d’installer et de mettre en œuvre une configuration distribuée de données sous la solution HBase. Comprendre le fonctionnement de HBase, savoir mettre en place une configuration distribuée  

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD004

Big Data – Enjeux et perspectives

        • Disposer d'une vision claire du Big Data et de ses enjeux
        • Connaître les concepts sous-jacents
        • Comprendre comment les entreprises les plus avancées, dans tous les secteurs économiques, ont mis en place et tiré profit de projets Big Data
        • Connaitre les informations essentielles pour lancer une initiative Big Data
        • Connaitre l'écosystème, et les principales technologies et solutions associées au Big Data
        • Savoir mesurer les impacts de tels projets sur l'entreprise et son organisation
 

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD030

Elasticsearch : indexation de contenu

A l’issue de la formation, le stagiaire sera capable de mettre en oeuvre une solution de recherche performante de données volumineuses avec ElasticSearch.   Situer Elasticsearch dans un écosystème Big Data Identifier les enjeux et les cas d'utilisation d'un moteur de recherche Appréhender le fonctionnement d'ElasticSearch Savoir installer et configurer ElasticSearch Indexer des volumes importants de données Comprendre comment administrer le système et le surveiller afin de garantir sa disponibilité

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

NE080

Big Data – Spark pour les développeurs

Découvrir les concepts clés du Big Data Comprendre l'écosystème technologique d'un projet Big Data Evaluer les techniques de gestion des flux de données massives Implémenter des modèles d'analyses statistiques pour répondre aux besoins métiers Découvrir les outils de Data Visualisation

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

BD005

Big Data Foundation Certifiant

      • Connaître les fondamentaux du Big Data, ses origines et ses caractéristiques
      • Comprendre ce qu'est le Data Mining
      • Appréhender les technologies les plus populaires du Big Data
      • Préparer et passer l'examen de certification "Big Data Foundation" de l'EXIN
 

21 heures de formations sur 3 Jours
En savoir plus