Dernière mise à jour le 12/12/2024

Big Data – L’essentiel

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : Fondamenteaux
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

      • Comprendre le concept du Big Data Être capable d'identifier l’écosystème et comprendre les technologies associées
      • Savoir anticiper son intégration dans les activités informatiques de l'entreprise
      • Être en mesure de l'exploiter dans le respect des règles de sécurité et de confidentialité
 

Public visé

      • Responsables de la DSI s'interrogeant sur les apports et le déploiement du Big Data Chefs de projets,
      • Responsables de métiers et consultants souhaitant aborder les projets
      • Toute personne impliquée dans la réflexion et l'étude du Big Data
 

Pré-requis

Connaissances sommaires en informatique

Programme

EXEMPLES D'USAGE PERTINENT DU BIG DATA
Réseaux sociaux : Google, Twitter, Youtube
Gestion des clients (CRM) : Vue 360° des clients / Multicanal
Sécurité informatiques (étude de logs) : identification des tentatives d'attaques
Analyse des logs d'Internet (Web)
Profiling d'individus : ADN numérique
Synthèse des critères de succès d'un projet Big Data et causes d'échec  
 
DÉFINITION COMMUNE DU BIG DATA SELON LES GRANDS ACTEURS DU MARCHÉ
Caractéristiques techniques des 3V de Gartner (Vélocité, Variété et Volume) et les variantes (Véracité, Valeur, Validité…) Collecte et traitement des données structurées, semi-structurées et non-déstructurées
Transformation des données en informations
Création de la valeur à partir des données / Exemple de monétisation
Exemple : gestion des données en cycles, de l'acquisition à la gouvernance  
 
TECHNOLOGIES DE RÉFÉRENCE DU BIG DATA À CONNAÎTRE
Stockage des données à traiter : fichiers, blocs et objets
Différents types de base des données NoSQL (Not Only SQL)
Architecture de cluster et composants économiques
Traitement parallèle des données (Grid)
Hadoop : un modèle d'open source du Big Data adopté par les grands acteurs de l'informatique (IBM, Oracle, Microsoft, Amazone, EMC, Google...)
Principaux composants d'Hadoop : HDFS (Hadoop Distributes File System), MapReduce ...
Ecosystème et technologies associées à Hadoop : Pig, Flume, Zookeeper, H-BASE, Lucine, Hive, Oozie, Cassandra, Machine Learning...
Exemple de traitement en temps réel : traitement des données à la volée (Data Streaming)
Analyse de données (Data Analytics et Business Intelligent)  
 
INTRODUCTION AUX ARCHITECTURES DES SOLUTIONS DE CALCUL DISTRIBUÉ
Stockage objets (pas de verrouillage de fichier dans la cadre des multiutilisateurs)
Serveurs NoSQL et HDFS (Fichiers distribués)
Scalabilité horizontale
Enjeux des architectures distribuées selon l'organisme
CSA (Cloud Security Alliance) dédié au Big Data : Sécurité, gestion des données en grandes quantités
Limitations en termes d'usages (Analytiques)
Impacts des choix de technologies et d'architectures sur les usages (traitement des données en batch, temps réel, streaming …)  
 
PLATES-FORMES CLOUD PUBLIC BIG DATA APAAS (DATA AS A SERVICE) À EXPLOITER IBM
Analytics de la plate-forme
Bluemix
Amazone
Web Services (stockage des données et plates-formes d'analytiques)
Google Platform Big Data
Microsoft
Azure
Big Data Points communs et différents entre les plates-formes Big Data  
 
TROIS APPROCHES DE DÉPLOIEMENT DU BIG DATA : SUR SITE ET DANS LE CLOUD DAAS
Causes des nombreux échecs de projets
Big Data selon des cabinets d'étude du secteur
Trois approches de déploiement "sur site" : Hadoop et son écosystème à télécharger, Big Data en versions distribuées et Data a Service Déploiement sur site : définition des objectifs, choix des solutions d'analyse et d'intégration, présentation des informations (Data Visualization) / revue des fournisseurs de composants Big Data
Déploiement sur site en version distribuée : Hortonworks, MapR, Cloudera, IBM
Déploiement dans les plates-formes Cloud Big Data et les précautions à prendre (métriques de qualité)  
 
QUALITÉ DES DONNÉES
Les 11 principales étapes de traitement des données selon les organismes internationaux
Processus de qualification des données (temporel, contextuel, liens aux autres données...) / cadres juridiques (CNIL, usages libres, payants...), formats ouverts et propriétaires
Approche d'enrichissement avec l'Open Data / WiKiData.org  
 
SÉCURITÉ DES DONNÉES ET CONFIDENTIALITÉ DU BIG DATA
Loi européenne et CNIL (protection de la vie privée)
Recommandation des bonnes pratiques de l'organisme international
CSA (Cloud Security Alliance) pour le Big Data Panorama des moyens conventionnels de sécurité des données et d'accès au Datacenter (cryptage et DLP : Data Lost Prevention…)  
 
IMPACTS DU BIG DATA À ANTICIPER
Évolution des données (Internet des objets, mobilité...)
Impacts sur les compétences des équipes informatiques, de DRH, du Management...
Rôle de la DSI face à la montée du Big Data et des solutions numériques
 

Modalités

Modalités : en présentiel, distanciel ou mixte . Toutes les formations sont en présentiel par défaut mais les salles sont équipées pour faire de l'hybride. – Horaires de 9H à 12H30 et de 14H à 17H30 soit 7H – Intra et Inter entreprise.
Pédagogie : essentiellement participative et ludique, centrée sur l’expérience, l’immersion et la mise en pratique. Alternance d’apports théoriques et d’outils pratiques.
Ressources techniques et pédagogiques : Support de formation au format PDF ou PPT Ordinateur, vidéoprojecteur, Tableau blanc, Visioconférence : Cisco Webex / Teams / Zoom.
Pendant la formation : mises en situation, autodiagnostics, travail individuel ou en sous-groupe sur des cas réels.

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.
Code de formation : BD003

Tarifs

Prix public : 1590
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Durée : 14 heures
Délai d'accès : Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

BD018

Hadoop : l’écosystème

Chefs de projets, développeurs, et toute personne souhaitant comprendre les mécanismes Hadoop et le rôle de chaque composant.

7 heures de formations sur 1 Jours
En savoir plus

Formation continue

Big Data

DB034

Dataiku DSS

Savoir installer, configurer, Dataiku DSS, l'utiliser depuis l'interface web ou des API. Présentation, concepts DSS Connexion aux données Préparation des données Graphiques et statistiques Machine learning Flow/Recipes Interfaces de programmation

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD019

Développer des applications pour Spark avec Hadoop Cloudera avec Certification

    • Identifier et utiliser les outils appropriés à chaque situation dans un écosystème hadoop
    • Utiliser Apache Spark et l'intégrer dans l'écosystème hadoop
    • Utiliser Sqoop, Kafka, Flume, Hive et Impala
 

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

NSQL

Les fondamentaux du NoSQL

#actioncollective #NoSQL  

A l’issue de la formation, le stagiaire sera capable d’appréhender de façon opérationnelle les principales caractéristiques des bases de données NoSQL. Identifier les différences entre SGBD SQL et SGBD NoSQL Évaluer les apports et les inconvénients inhérents aux technologies NoSQL Identifier les principaux acteurs et solutions du marché pour chaque modèle de données Connaître les champs d'application des SGBD NoSQL en opérationnel et en analytique Comprendre les différentes architectures, modèles de données et implémentations techniques Identifier les critères de choix   

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD020

ElasticStack : présentation

Comprendre le fonctionnement et les apports d'Elastic Stack et de ses composants (Elasticsearch, Logstash, Kibana, Beats) dans le traitement des données..

7 heures de formations sur 1 Jours
En savoir plus

Formation continue

Big Data

NSQLCAA

NoSQL – Apache Cassandra, mise en œuvre et administration

#actioncollective #NoSQL  #Apache #Cassandra  

A l’issue de la formation, le stagiaire sera capable d’installer et d’administrer des bases de données sous la solution NoSQL Apache Cassandra. Découvrir l'architecture de NoSQL Apache Cassandra et ses apports par rapport aux autres solutions Installer et configurer le SGBD NoSQL Apache Cassandra Administrer et sécuriser un cluster Cassandra Appréhender le CQL (Cassandra Query Language) Créer une base de données et manipuler ses objets Connaitre la notion de grappe au sein de la base de données      

21 heures de formations sur 3 Jours
En savoir plus