Dernière mise à jour le 12/12/2024

Spark, développer des applications pour le Big Data

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : Hive - Spark
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

A l’issue de la formation, le stagiaire sera capable de maîtriser le framework Spark pour traiter des données hétérogènes et optimiser les calculs.
 
Maîtriser les concepts fondamentaux de Spark
Savoir intégrer Spark dans un environnement Hadoop
Développer des applications d’analyse en temps réel avec Spark Streaming
Faire de la programmation parallèle avec Spark sur un cluster
Manipuler des données avec Spark SQL
Avoir une première approche du Machine Learning

Public visé

Chefs de projet, Data Scientists, Développeurs, Architectes…

Pré-requis

Avoir des connaissances de Java ou Python et des notions de calculs statistiques

Programme

Maîtriser les concepts fondamentaux de Spark
Présentation Spark, origine du projet,apports, principe de fonctionnement. Langages supportés.
Modes de fonctionnement : batch/Streaming.
Bibliothèques : Machine Learning, IA
Mise en oeuvre sur une architecture distribuée. Architecture : clusterManager, driver, worker, ...
Architecture : SparkContext, SparkSession, Cluster Manager, Executor sur chaque noeud. Définitions : Driver program, Cluster manager, deploy mode, Executor, Task, Job
 
Savoir intégrer Spark dans un environnement Hadoop
Intégration de Spark avec HDFS, HBase,
Création et exploitation d'un cluster Spark/YARN. Intégration de données sqoop, kafka, flume vers une architecture Hadoop et traitements par Spark.
Intégration de données AWS S3.
Différents cluster managers : Spark interne, avec Mesos, avec Yarn, avec Amazon EC2
 
Atelier : Mise en oeuvre avec Spark sur Hadoop HDFS et Yarn. Soumission de jobs, supervision depuis l'interface web
 
Développer des applications d’analyse en temps réel avec Spark Streaming
Objectifs , principe de fonctionnement: stream processing. Source de données : HDFS, Flume, Kafka, ...
Notion de StreamingContext, DStreams, démonstrations.
 
Atelier : traitement de flux DStreams en Scala. Watermarking. Gestion des micro-batches.
 
Intégration de Spark Streaming avec Kafka
 
Atelier : mise en oeuvre d'une chaîne de gestion de données en flux tendu : IoT, Kafka, SparkStreaming, Spark. Analyse des données au fil de l'eau.
 
Faire de la programmation parallèle avec Spark sur un cluster
Utilisation du shell Spark avec Scala ou Python. Modes de fonctionnement. Interprété, compilé.
Utilisation des outils de construction. Gestion des versions de bibliothèques.
 
Atelier : Mise en pratique en Java, Scala et Python. Notion de contexte Spark. Extension aux sessions Spark.
 
Manipuler des données avec Spark SQL
Spark et SQL
Traitement de données structurées. L'API Dataset et DataFrames
Jointures. Filtrage de données, enrichissement. Calculs distribués de base. Introduction aux traitements de données avec map/reduce.
Lecture/écriture de données : Texte, JSon, Parquet, HDFS, fichiers séquentiels.
Optimisation des requêtes. Mise en oeuvre des Dataframes et DataSet. Compatibilité Hive
 
Atelier : écriture d'un ETL entre HDFS et HBase
 
Atelier : extraction, modification de données dans une base distribuée. Collections de données distribuées. Exemples.
 
Support Cassandra
Description rapide de l'architecture Cassandra. Mise en oeuvre depuis Spark. Exécution de travaux Spark s'appuyant sur une grappe Cassandra.
 
Spark GraphX
Fourniture d'algorithmes, d'opérateurs simples pour des calculs statistiques sur les graphes
 
Atelier : exemples d'opérations sur les graphes.
 
Avoir une première approche du Machine Learning
Machine Learning avec Spark, algorithmes standards supervisés et non-supervisés (RandomForest, LogisticRegression, KMeans, ...)
Gestion de la persistance, statistiques.
Mise en oeuvre avec les DataFrames.
 
Atelier : mise en oeuvre d'une régression logistique sur Spark
 

Modalités

Modalités : en présentiel, distanciel ou mixte . Toutes les formations sont en présentiel par défaut mais les salles sont équipées pour faire de l'hybride. – Horaires de 9H à 12H30 et de 14H à 17H30 soit 7H – Intra et Inter entreprise.
Pédagogie : essentiellement participative et ludique, centrée sur l’expérience, l’immersion et la mise en pratique. Alternance d’apports théoriques et d’outils pratiques.
Ressources techniques et pédagogiques : Support de formation au format PDF ou PPT Ordinateur, vidéoprojecteur, Tableau blanc, Visioconférence : Cisco Webex / Teams / Zoom.
Pendant la formation : mises en situation, autodiagnostics, travail individuel ou en sous-groupe sur des cas réels.

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.
Code de formation : BD021

Tarifs

Prix public : 1990
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Durée : 21 heures
Délai d'accès : Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

NE080

Big Data – Spark pour les développeurs

Découvrir les concepts clés du Big Data Comprendre l'écosystème technologique d'un projet Big Data Evaluer les techniques de gestion des flux de données massives Implémenter des modèles d'analyses statistiques pour répondre aux besoins métiers Découvrir les outils de Data Visualisation

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

BD004

Big Data – Enjeux et perspectives

        • Disposer d'une vision claire du Big Data et de ses enjeux
        • Connaître les concepts sous-jacents
        • Comprendre comment les entreprises les plus avancées, dans tous les secteurs économiques, ont mis en place et tiré profit de projets Big Data
        • Connaitre les informations essentielles pour lancer une initiative Big Data
        • Connaitre l'écosystème, et les principales technologies et solutions associées au Big Data
        • Savoir mesurer les impacts de tels projets sur l'entreprise et son organisation
 

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD045

BigData : intégration SQL, Hive, SparkDataFrames

Comprendre les connexions existantes entre les mondes relationnels et NoSQL en environnement Big Data. Savoir mettre en oeuvre Hive et Pig, Impala, les Spark Dataframes.    

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD005

Big Data Foundation Certifiant

      • Connaître les fondamentaux du Big Data, ses origines et ses caractéristiques
      • Comprendre ce qu'est le Data Mining
      • Appréhender les technologies les plus populaires du Big Data
      • Préparer et passer l'examen de certification "Big Data Foundation" de l'EXIN
 

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

BD046

BigData supervision: Grafana Kibana Graphite Prometheus

Connaître les outils et mécanismes permettant de superviser des fermes BigData. Identifier les critères de choix.

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

BD006

Big Data – Mise en oeuvre pratique d’une solution complète d’analyse des données

        • Disposer des compétences techniques nécessaires à la mise en œuvre d'analyses Big Data
        • Comprendre le cadre juridique du stockage et de l'analyse de données
        • Savoir utiliser des outils de collecte opensource
        • Être en mesure de choisir la bonne solution de stockage de données au regard des spécificités d'un projet (OLAP, NoSQL, graph)
Explorer la boite à outils technologique que constitue Hadoop et son écosystème et savoir comment utiliser chaque brique (MapReduce, HIVE, SPARK,…)  

28 heures de formations sur 4 Jours
En savoir plus