Dernière mise à jour le 02/04/2025

Visualisation avancée de données avec Python

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : Fondamenteaux
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

Savoir traiter les données scientifiques brutes pour leur visualisation
Savoir utiliser les librairies graphiques de python pour visualiser des données
Graphiques spécifiques : graphes dynamiques, cartographie

Public visé

Développeurs souhaitant mettre en valeur les données scientifiques avec un support visuel, Data analysts, Data scientists.

Pré-requis

Avoir suivi la formation "Python Initiation" ou avoir un niveau équivalent et avoir une pratique régulière du langage Python

Programme

 1) Visualisation de données
    • Contexte de la visualisation de données scientifiques et pièges à éviter
    • Concepts essentiels de la communication visuelle (couleurs, taille, forme, type de graphique, ...)
    • Architecture de présentation des données (DPA)
    • La valorisation des données. Les indicateurs de performance clés (KPI).
    • Objectifs et règles de conception : clarté, pertinence, cohérence, stimulation.
    • Principes de perceptions des informations.
    • Types de visualisation de base : graphiques linéaires, diagrammes en secteurs, cartes de zone, frise
    • chronologique, diagrammes de dispersion, arbres, pyramides des populations
    • Types évolués : infographie, nuages de bulles, graphiques à puces, cartes de chaleur, graphiques de séries chronologiques
 
Atelier : mise en évidence de la pertinence du type de graphiques :
comparaison camemberts, barres, chandeliers japonais, ...
 
2 ) Personnalisation des graphes avec Matplotlib
    • Fonctionnement de matplotlib : les backends, graphiques interactifs, polices, gestion des évènements,performances.
    • Exploration du package pour créer des graphes sur différents types de données (qualitatives, quantitatives,séries temporelles, 3 dimensions)
    • Affiner et compléter les graphes (échelle, valeurs aberrrantes, barres d'erreur, etc ..)
    • Les types : bar, scatter, plot, boxplot, fill_between, imshow, tricontour, quiver
    • Personnalisation de graphes (légende, points remarquables avec flèche et texte en LateX dans le graphe,modification du style de graphe)
 
Atelier : création de graphiques personnalisés. Utilisation des styles Matplotlib
Atelier : détection d'anomalie par l'utilisation d'animations
 
3) Packages spécialisés
    • Transformer des données avec Pandas (calculs d'agrégats, traitement des valeurs manquantes ou incohérentes, gestion des dates, etc ...
 
Atelier : nettoyage, préparation et regroupement de données de températures.
    • Mise en oeuvre des bfill, ffill, ... Gestion des nan.
    • Gestion des données temporelles. Préparation des données pour
    • visualisation.
    • Le package Seaborn pour les données statistiques (box plot, pair plot, violin plot, matrices de graphiques,cartes thermiques, etc ...)
Atelier : installation du paquet et création d'une carte thermique sur les données précédentes.
    • Cartographie (package cartopy et/ou Folium)
 
Atelier : ajout d'une planisphère sur la carte thermique précédente.
    • Visualisation des points chauds de la planère en fonction des
    • années
 
4) Interactivité et gros volumes de données
    • Création de dashboards simples (graphes et boutons simples permettant l'action de l'utilisateur)
    • Dashboards interactifs et partageables (par exemple, lien avec un notebook IPython ou Jupyter)
    • Création de graphiques web interactifs avec le package Bokeh, Plotty ...
    • Les apis Bokeh
 
Atelier : mise en oeuvre de Bokeh. Création d'un graphique interactif reliant les isothermes de la carte précédente
    • Visualisation dans un navigateur.
    • Paasage à l'échelle, présentation de l'écosystème HoloViz : datashader, geoviews, panel.
    • Gros volume de données avec datashader ou holoViz.
 
Atelier : intégration de données vents, visibilité au graphique précédent.
    • Mise en évidence de la tenue à la charge.
 
 
 

Modalités

Modalités : en présentiel, distanciel ou mixte . Toutes les formations sont en présentiel par défaut mais les salles sont équipées pour faire de l'hybride. – Horaires de 9H à 12H30 et de 14H à 17H30 soit 7H – Intra et Inter entreprise.
Pédagogie : essentiellement participative et ludique, centrée sur l’expérience, l’immersion et la mise en pratique. Alternance d’apports théoriques et d’outils pratiques.
Ressources techniques et pédagogiques : Support de formation au format PDF ou PPT Ordinateur, vidéoprojecteur, Tableau blanc, Visioconférence : Cisco Webex / Teams / Zoom.
Pendant la formation : mises en situation, autodiagnostics, travail individuel ou en sous-groupe sur des cas réels.

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.
Code de formation : BDP05

Tarifs

Prix public : 1960
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Durée : 14 heures
Délai d'accès : Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

SP33359

PRINCE 2 PRACTITIONER

Comprendre comment appliquer les principes PRINCE2® en contexte Comprendre comment appliquer une gestion efficace des personnes dans le cadre de projets réussis Comprendre comment appliquer et adapter les aspects pertinents des pratiques PRINCE2® en contexte Comprendre comment appliquer (et adapter) les aspects pertinents des processus PRINCE2® en contexte Se préparer à l'examen PRINCE2® Practitioner

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD0103

Les fondamentaux de l’analyse statistique avec R

Savoir installer R Comprendre comment manipuler des données avec R Savoir importer et exporter des données Être en mesure de réaliser des analyses statistiques basiques avec R Savoir restituer des résultats à l'aide de graphiques

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

DB014

Hadoop, développer des applications pour le Big Data

 

    • Construire un programme à base de Map Reduce
    • Intégrer Hadoop HBase dans un workflow d'entreprise
    • Travailler avec Apache Hive et Pig depuis HDFS
    • Utiliser un graphe de tâches avec Hadoop
 

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

SP41174

Linux – Commandes de base

Acquérir la connaissance des commandes fondamentales des systèmes d'exploitation Unix et Linux à travers des exercices modulaires de difficulté progressive Devenir autonome pour une première prise en main d'un système Passer l'étape importante de la maîtrise de l'éditeur "vi"

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

BD016

Hadoop Hortonworks : administration avec Ambari

Connaître les principes du framework Hadoop et savoir l'installer, le configurer et l'administrer avec Ambari (tableaux de bord, supervision, gestion des services, etc ...)

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

DB034

Dataiku DSS

Savoir installer, configurer, Dataiku DSS, l'utiliser depuis l'interface web ou des API. Présentation, concepts DSS Connexion aux données Préparation des données Graphiques et statistiques Machine learning Flow/Recipes Interfaces de programmation

14 heures de formations sur 2 Jours
En savoir plus