Dernière mise à jour le 12/12/2024

Les fondamentaux de l’analyse statistique avec R

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : ElastickSearch,…
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

Savoir installer R
Comprendre comment manipuler des données avec R
Savoir importer et exporter des données
Être en mesure de réaliser des analyses statistiques basiques avec R
Savoir restituer des résultats à l'aide de graphiques

Public visé

Ingénieurs
Analystes
Data analysts
Toute personne intéressée par l'analyse statistique avec R

Pré-requis

Avoir suivi la formation "Les fondamentaux de la statistique appliquée" (BI090) ou connaissances mathématiques équivalentes
Être familier avec l'environnement Microsoft Windows

Programme

1 - Introduction
Qu'est-ce que R ?
Avantages et inconvénients
Solutions concurrentes gratuites ou payantes
 
2 - Installation
Installation de R ou Microsoft R Open sur MS Windows ou Scientific Linux
Découverte de l'environnement
Utiliser l'historique des commandes
Exemple d'environnement superposé (R-Studio)
Comment citer le logiciel dans une publication scientifique
Comment citer des packages dans une publication scientifique
 
3 - Utilisation
Vider la console de commande
Utilisation de l'aide
Changer la langue de l'interface
Quitter en ligne de commande
Changer le dossier de travail par défaut temporairement ou à chaque session (*.Rprofile)
Changer définitivement le dossier par défaut des packages (*.Rprofile)
Sauver/Charger l'espace de travail (*.Rdata)
Sauver/Charger/Exécuter un historique des commandes (*.Rhistory)
Sauver les commandes et sorties dans un fichier (*.txt)
Sauver/Charger un script (*.R)
 
4 - Manipulation de packages
Installer/Désinstaller/Mettre à jour des packages
Obtenir des informations systèmes sur les packages
Écrire plusieurs commandes sur une ligne
Ajouter des commentaires
 
5 - Types de données
Manipulations de scalaires (réels)
Manipulations de nombres complexes
Manipulations de variables
Manipulations de vecteurs
Manipulations de matrices
Manipulations de textes
Manipulations de dates et de durées
Création/Édition de données en ligne de commande
Gérer les variables dans la mémoire
 
6 - Import et export de données
Importer/Exporter des données d'Excel
Importer/Exporter des données en *.csv et gestion du passage d'encodage Linux/Windows
Importer/Exporter des fichiers SAS
Importer des données *.csv du web
Fusionner des fichiers *.csv
Importer de données de MS Access
Importer des données *.xml du web
Importer des données de MySQL
Importer des données d'Oracle (Express)
Importer des fichiers *.json
 
7 - Manipulation de données
Utiliser le SQL
Quelques Data set
Manipuler les data frames
Accélérer l'accès aux colonnes
Renommer les colonnes
Appliquer des rangs
Trier des données
Filtrer des données
Réaliser des sous-sélections
Fusionner des données
Supprimer les doublons
Échantillonnage
Empiler/Désempiler des données
 
8 - Analyse de données
Synthétiser des données (tables de contingence)
Travailler avec des valeurs absentes
Définir le nombre de décimales de chaque sortie
Générer des variables pseudo-aléatoires
Statistiques descriptives simples (comptage, éléments uniques, moyenne, max, min, centiles, somme, écart-type biaisé/non biaisé, cv, médiane, etc.)
Plotter (tracer) des fonctions algébriques
Racines d'équations univariées
Intégration numérique
Intégration algébrique
Dérivation algébrique/numérique
Optimisation linéaire uni ou multidimensionnelle
Optimisation sous contrainte
Programmation linéaire

Modalités

Modalités : en présentiel, distanciel ou mixte . Toutes les formations sont en présentiel par défaut mais les salles sont équipées pour faire de l'hybride. – Horaires de 9H à 12H30 et de 14H à 17H30 soit 7H – Intra et Inter entreprise.
Pédagogie : essentiellement participative et ludique, centrée sur l’expérience, l’immersion et la mise en pratique. Alternance d’apports théoriques et d’outils pratiques.
Ressources techniques et pédagogiques : Support de formation au format PDF ou PPT Ordinateur, vidéoprojecteur, Tableau blanc, Visioconférence : Cisco Webex / Teams / Zoom.
Pendant la formation : mises en situation, autodiagnostics, travail individuel ou en sous-groupe sur des cas réels.

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.

Les plus de la formation

Une formation très pratique : 90% du temps de la formation est dédié à la mise en pratique pour une meilleure assimilation de notions de base.
Des consultants expérimentés partagent leur savoir-faire avec les participants.
Code de formation : BD0103

Tarifs

Prix public : 2195
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Durée : 21 heures
Délai d'accès : Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

BD003

Big Data – L’essentiel

      • Comprendre le concept du Big Data Être capable d'identifier l’écosystème et comprendre les technologies associées
      • Savoir anticiper son intégration dans les activités informatiques de l'entreprise
      • Être en mesure de l'exploiter dans le respect des règles de sécurité et de confidentialité
 

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD030

Elasticsearch : indexation de contenu

A l’issue de la formation, le stagiaire sera capable de mettre en oeuvre une solution de recherche performante de données volumineuses avec ElasticSearch.   Situer Elasticsearch dans un écosystème Big Data Identifier les enjeux et les cas d'utilisation d'un moteur de recherche Appréhender le fonctionnement d'ElasticSearch Savoir installer et configurer ElasticSearch Indexer des volumes importants de données Comprendre comment administrer le système et le surveiller afin de garantir sa disponibilité

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

NE080

Big Data – Spark pour les développeurs

Découvrir les concepts clés du Big Data Comprendre l'écosystème technologique d'un projet Big Data Evaluer les techniques de gestion des flux de données massives Implémenter des modèles d'analyses statistiques pour répondre aux besoins métiers Découvrir les outils de Data Visualisation

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

BD004

Big Data – Enjeux et perspectives

        • Disposer d'une vision claire du Big Data et de ses enjeux
        • Connaître les concepts sous-jacents
        • Comprendre comment les entreprises les plus avancées, dans tous les secteurs économiques, ont mis en place et tiré profit de projets Big Data
        • Connaitre les informations essentielles pour lancer une initiative Big Data
        • Connaitre l'écosystème, et les principales technologies et solutions associées au Big Data
        • Savoir mesurer les impacts de tels projets sur l'entreprise et son organisation
 

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD045

BigData : intégration SQL, Hive, SparkDataFrames

Comprendre les connexions existantes entre les mondes relationnels et NoSQL en environnement Big Data. Savoir mettre en oeuvre Hive et Pig, Impala, les Spark Dataframes.    

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD005

Big Data Foundation Certifiant

      • Connaître les fondamentaux du Big Data, ses origines et ses caractéristiques
      • Comprendre ce qu'est le Data Mining
      • Appréhender les technologies les plus populaires du Big Data
      • Préparer et passer l'examen de certification "Big Data Foundation" de l'EXIN
 

21 heures de formations sur 3 Jours
En savoir plus