Dernière mise à jour le 23/11/2024

Elasticsearch : indexation de contenu

Informations générales

Type de formation : Formation continue
Domaine : IA, Big Data et Bases de données
Filière : Big Data
Rubrique : ElastickSearch,…
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

A l’issue de la formation, le stagiaire sera capable de mettre en oeuvre une solution de recherche performante de données volumineuses avec ElasticSearch.
 
Situer Elasticsearch dans un écosystème Big Data
Identifier les enjeux et les cas d'utilisation d'un moteur de recherche
Appréhender le fonctionnement d'ElasticSearch
Savoir installer et configurer ElasticSearch
Indexer des volumes importants de données
Comprendre comment administrer le système et le surveiller afin de garantir sa disponibilité

Public visé

Administrateur système, Architectes, Développeurs, Data Analysts et/ou Data Engineers, …

Pré-requis

Disposer de solides bases en administration système Unix/Linux

Programme

Situer Elasticsearch dans un écosystème Big Data
Positionnement d'Elasticsearch et des produits complémentaires :Kibana, Logstash, Beats, X-Pack
Présentation des concepts clés d'ElasticSearch
 
Atelier : comparaison d'ElasticSearch avec d'autres moteurs d'indexation en fonction du cas d'utilisation
 
Identifier les enjeux et les cas d'utilisation d'un moteur de recherche
Présentation de la pile elastic.
Cas d'usage classiques : analyse de logs et securité, analyse de métriques, recherches web, ...
Analyse et visualisation de données
Principes de base de l'analyse de texte, recherche dans des données structurées, recherche full text,
 
Atelier : choix d'un outil d'indexation en fonction des contraintes d'utilisation
 
Appréhender le fonctionnement d'ElasticSearch
Principe : base technique Lucene et apports d'ElasticSearch. Fonctionnement distribué
Concepts clés : index, types, documents, noeuds, clusters, shards et replica
Notions de datatypes et mappings
Opérations CRUD : exemples d'opérations basiques, création d'index et mappings
 
Atelier : Installation d'une pile Elastic et création d'un index
 
Savoir installer et configurer ElasticSearch
Prérequis techniques. Mode d'installation en grappe distribuée.
API RESTful en HTTP . Requêtes avec Search Lite et avec Query DSL (domain-specific language)
 
Atelier : premiers pas dans la console DevTools de Kibana.
 
Indexer des volumes importants de données
Format et stockage des données.
Conversion au format JSON des données à traiter.
Structure des données. Stockage, indexation. Terminologie Elasticsearch : notions de document,index.
Métadonnées : _index, _ID
Choix de l'identifiant par l'application avec l'API index, ou génération automatique d'un identifiant, ...
Indexation inversée. Outils d'interrogation.
 
Atelier : exemples de requêtes simples et plus complexes : recherche de «phrases», extraction de plusieurs documents, ...
 
Notion de pertinence du résultat : «score»
Utilisation de 'filtre' pour affiner des requêtes.
 
Atelier : Mise en oeuvre d'une aggrégation de résultats.
 
Ecriture de requêtes complexes.
Notions d'agrégations,
 
Atelier : préparation des données, agrégation de mesures, bucket aggregation.
 
Gestion des accès concurrents
Utilisation du numéro de version.
Gestion par l'application : différentes méthodes selon les contraintes fonctionnelles.
Utilisation d'un numéro de version externe.
 
Comprendre comment administrer le système et le surveiller afin de garantir sa disponibilité
Flux logstash et présentation Kibana
Traitement de logs avec logstash
Introduction à beats, installation et configuration
Supervision du système avec MetricBeat et FileBeat
 
Atelier : recherche, visualisation, création de tableaux de bord et graphiques à partir des données fournies par Elasticsearch
 
 

Modalités

Jusqu'a 8 jours avant le début de la formation, sous condition d'un dossier d'insciption complet

Méthodes

Fin de formation : entretien individuel.
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation.
Assiduité : certificat de réalisation.
Validations des acquis : grille d'evalution  des acquis établie par le formateur en fin de formation.
Code de formation : BD030

Tarifs

Prix public : 1520
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
Le dispositif FNE-Formation.
L’OPCO (opérateurs de compétences) de votre entreprise.
France Travail: sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
CPF -MonCompteFormation
Contactez nous pour plus d’information : contact@aston-institut.com

Lieux & Horaires

Durée : 14 heures
Délai d'accès :
Jusqu'à 8 jours avant le début de la formation.

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

BD016

Hadoop Hortonworks : administration avec Ambari

Connaître les principes du framework Hadoop et savoir l'installer, le configurer et l'administrer avec Ambari (tableaux de bord, supervision, gestion des services, etc ...)

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

DB034

Dataiku DSS

Savoir installer, configurer, Dataiku DSS, l'utiliser depuis l'interface web ou des API. Présentation, concepts DSS Connexion aux données Préparation des données Graphiques et statistiques Machine learning Flow/Recipes Interfaces de programmation

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD018

Hadoop : l’écosystème

Chefs de projets, développeurs, et toute personne souhaitant comprendre les mécanismes Hadoop et le rôle de chaque composant.

7 heures de formations sur 1 Jours
En savoir plus

Formation continue

Big Data

NSQL

Les fondamentaux du NoSQL

#actioncollective #NoSQL  

A l’issue de la formation, le stagiaire sera capable d’appréhender de façon opérationnelle les principales caractéristiques des bases de données NoSQL. Identifier les différences entre SGBD SQL et SGBD NoSQL Évaluer les apports et les inconvénients inhérents aux technologies NoSQL Identifier les principaux acteurs et solutions du marché pour chaque modèle de données Connaître les champs d'application des SGBD NoSQL en opérationnel et en analytique Comprendre les différentes architectures, modèles de données et implémentations techniques Identifier les critères de choix   

14 heures de formations sur 2 Jours
En savoir plus

Formation continue

Big Data

BD019

Développer des applications pour Spark avec Hadoop Cloudera avec Certification

    • Identifier et utiliser les outils appropriés à chaque situation dans un écosystème hadoop
    • Utiliser Apache Spark et l'intégrer dans l'écosystème hadoop
    • Utiliser Sqoop, Kafka, Flume, Hive et Impala
 

28 heures de formations sur 4 Jours
En savoir plus

Formation continue

Big Data

NSQLCAA

NoSQL – Apache Cassandra, mise en œuvre et administration

#actioncollective #NoSQL  #Apache #Cassandra  

A l’issue de la formation, le stagiaire sera capable d’installer et d’administrer des bases de données sous la solution NoSQL Apache Cassandra. Découvrir l'architecture de NoSQL Apache Cassandra et ses apports par rapport aux autres solutions Installer et configurer le SGBD NoSQL Apache Cassandra Administrer et sécuriser un cluster Cassandra Appréhender le CQL (Cassandra Query Language) Créer une base de données et manipuler ses objets Connaitre la notion de grappe au sein de la base de données      

21 heures de formations sur 3 Jours
En savoir plus